Reliable recall of spontaneous activity patterns in chaotic cortical networks
P. Yger, O. Marre, A. Davison and Y. Frégnac
Unité de Neurosciences Intégratives et Computationelles, CNRS, Gif sur Yvette, France

Introduction

Biological neuronal networks spontaneously generate irregular activity patterns whose structure and significance are still a matter of debate. In attempting to mimic such dynamical behaviour, recent models of spiking neurons have been able to produce an asynchronous, irregular, self-sustained activity without any stochastic input [Vogels and Abbott, 2005].

However, the propagation of external stimulation within those networks is still a challenge since stimulus-evoked activity is corrupted by the chaotic background, triggering a response that is neither reliable nor predictable. Here we hypothesize that reproducible dynamics and responses in a generic recurrent cortical-like network can be obtained if the imposed external drive reproduces the self-sustained activity.

The Frozen Paradigm

Illustration of the Frozen Paradigm. A variable fraction of a neuronal network (the "clamped" neurons) is forced to replay a part of the spontaneous activity, and we measure the extent to which this frozen population drives the rest of the network ("free-running" neurons) to the "target" activity, i.e. the completion of the spontaneous pattern.

Example in a real network

We can observe a reliable convergence to the target activity which is insensitive to initial conditions, for half of the network frozen.

The reliability is enhanced by the activity of the recurrent connections.

Material & Methods

• Integrate and Fire model

 - Neuron model: Neurons are composed of 10000 leaky integrate-and-fire neurons with membrane time constant $\tau_m = 20ms$, and resting membrane potential $V_{rest} = -70mV$. When the membrane potential V reaches the spiking threshold $V_{th} = -50mV$, a spike is generated and the membrane potential is clamped to the resting potential during a refractory period of duration $\tau_{ref} = 5ms$.

 - Synaptic connections: The synaptic connections between neurons are modelled as an absence of conductance, resulting in a model similar to the CUBA and COBRA models of [Vogels 2005].

 - Equation of activity:

 \[\frac{dv}{dt} = -\frac{v}{\tau_m} + g_{syn}(v(t)) + g_{ext}(v(t)) \]

 - For a Poissonian input:

 \[g_{ext}(v(t)) = \sum_{i=1}^{10000} g_{syn}(v(t)) \]

• Experimental results

 - Intracellular responses (spikes and V_m) of a simple V1 cell of an anesthetized and paralyzed cat to two movies, repeated 10 times: a natural image animated with simulated eye movements, and an optimal drifting grating [Baudot et al, SfN abstract, 2005].

 - The reliability of the cortical responses seems to be stimulus dependent.

Conclusions and further works

• Considering neuronal network dynamics as a high-dimensional attractor, here the stimulation makes the system converge to a particular predefined orbit, instead of switching into another low-dimensional attractor.

 - Reliability in a recurrent network with irregular activity is stimulus dependent, increasing for inputs with ongoing activity statistics.

 - Implement this paradigm on more structured networks, including topological structures, to stretch differences between spontaneous activity, structured, and surrogate inputs.